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ABSTRACT

This paper deals with the characterization of four hydrophobic microfiltration
membranes from water permeation measurements. A method proposed by McGuire
et al. is used. The method uses a mathematical technique of smoothing spline fit in or-
der to obtain a smooth pore distribution function without the need of a priori assump-
tions about the nature or shape of the distribution. Good agreement between the dis-
crete distribution determined by a classical method and the continuous distribution
determined from the McGuire method was obtained.

Key Words. Characterization; Porous membranes; Pore size; Water per-
meability; Hydrophobic membranes

INTRODUCTION

The measurement of pore size and pore size distribution is very important
in the evaluation and characterization of microfiltration membranes. Pore size
and pore size distributions can be estimated by indirect methods (retention
measurements of well-characterized macromolecules) or they can also be
measured directly by various methods (2).
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Synthetic microfiltration membranes do not generally possess a uniform
pore size but have a pore size distribution. Of the direct methods, characteri-
zation via liquid permeation has the advantage of determining the pore size
distribution (not just the average pore size). Besides, with this method only
transmembrane pores that are available for flow (not pores that are blocked)
are evaluated. Finally, in this method the membrane is tested in its wet state,
and as a consequence the characterization obtained will be useful when the
membrane is used in that condition. For these reasons we have chosen this
technique for the characterization of microfiltration membranes.

In this technique the flux of a nonwetting fluid (contact angle � � 90° with
the membrane material) is measured as a function of the pressure drop across
the membrane. Because the studied membranes are hydrophobic, we used wa-
ter as the nonwetting fluid. All pores of the membrane were completely dry at
the start of the experiment. Application of a low pressure drop caused no flux
through the membrane. At �pmin the largest pores become permeable, and
smaller and smaller pores become permeable as the pressure increases. When
the pressure is increased further, the flux increases linearly with pressure (see
Fig. 1). It is possible to determine the pore size distribution from analysis of
this curve, which is usually referred to as the flow–pressure curve.

Our analysis of the flow–pressure curve was performed by using two dif-
ferent methods. In the first method a discrete pore size distribution was as-
sumed and the corresponding histogram could be obtained. The second
method was proposed recently by McGuire et al. (1), and the result is a smooth
continuous pore size distribution curve without the need to assume a priori a
common statistical distribution (3).
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FIG. 1 A theoretical flow–pressure curve. The dotted line shows the Hagen–Poiseuille line.
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We used the water permeation technique for the determination of the pore
size distribution of four hydrophobic membranes. Analysis of the flux pres-
sure results obtained has been performed by following the two above-men-
tioned methods.

THEORY

The present technique is a characterization method for hydrophobic
porous membranes in the wet state. We assume that the membrane does not
possess a uniform pore size but presents a pore size distribution. At the start
of the experiment all pores of the membrane are filled with air. Application
of a low pressure drop causes no flux through the membrane. As the pres-
sure drop across the membrane is increased beyond some minimum pressure
�pmin, the largest pores in the membrane are flooded with water, and the wa-
ter flows through these penetrated pores. As the pressure drop is increased
further, smaller pores become flooded successively. The radius of the small-
est flooded pore, assuming circular pores, is related to its flooding pressure
(the pressure at which a nonwetting fluid penetrates the pore) through the
Cantor equation:

r � � �
2�

�

co
p
s�

� (1)

where � is the water surface tension, � is the contact angle, and �p is the pres-
sure drop across the membrane.

For a pressure difference below �pmin (� 2� cos �/rmax), the membrane is
impermeable. When the pressure difference reaches the value �pmin, the fluid
begins to flow through the biggest pores. By increasing �p, smaller and
smaller pores become permeable. For �pmax (� 2� cos �/rmin), all pores are
permeable and the flux becomes proportional to the pressure difference ac-
cording to the Hagen–Poiseuille relation (Fig. 1).

In this work we used two methods in order to obtain a pore size distribution
from analysis of the flow-pressure curve: the first method results in a discrete
pore size distribution, and the second method results in a continuous pore size
distribution curve.

Discrete Pore Size Distribution

We carried out m experimental measurements (�pi, Ji ), i � 1, . . ., m. Tak-
ing into account Eq. (1), we know that for each experimental Ji the radius of
the smallest wet pore, ri , is

ri � � �
2�

�

co
p
s

i

�
� (2)
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We continued to approximate the pore size distribution function with a dis-
crete distribution with m � 1 classes, each with a width �rj � rj � rj 	 1, j �
1, . . ., m � 1. The values Rj (� rj � �rj /2) represent the center point of the
class j. If we assume cylindrical pores, we can write

Ji � �
8


�
�L
� � ∑

i

j�1
njRj

4��pi (3)

where nj is the number of pores of class Rj (that is, the number of pores with
radii between rj and rj	1), 
 is the water viscosity, L is the membrane thick-
ness, and � is the membrane tortuosity. Taking into account Eq. (3), the nj val-
ues can be determined from experimental data (�pi, Ji ) as

nj � ����
J
p
j	

j	

1

1
�� � ��

�

J
p
j

j
��� �

8

�




R

�L

j
4� (4)

and the pore size distribution as

�
�

n
r
j

j
� � ����

J
p
j	

j	

1

1
�� � ��

�

J
p
j

j
��� �

�

8

R




j
4

�

�

L

rj
� (5)

In this work the combination of constants 
�L is used as the normalization
constant. Using this normalization procedure, the relative number of pores
with radii between rj and rj	1 can be determined, but the absolute number of
pores cannot.

Continuous Pore Size Distribution

Following the method of McGuire et al. (1), we consider that the membrane
has a pore size distribution represented by ƒ(r). We consider that the mem-
brane area is large enough so that the pore size distribution can be considered
continuous. Then the number of pores with radii between r and r 	 dr is given
by ƒ(r) dr. The total flux through the membrane at �p � �pmin is given by

J � �rmax

r(�p)
�
8
�




�

�

p
L

� x4 ƒ(x) dx � C �p �rmax

r(�p)
x4 ƒ(x) dx (6)

where

C � �/8
�L

Taking a derivative of Eq. (6) with respect to �p gives

�
d(

d
�
J
p)

� � C �rmax

r(�p)
x4 ƒ(x) dx 	 �

C2�

�

c
p
os �
�ƒ(r)r4

� �
�
J
p
� 	 �

C2�

�

c
p
os �
� ƒ(r)r4

(7)
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Rearrangement and substitution of Eq. (1) gives the final expression for the
pore size distribution function:

ƒ(r) � ��d(
d
�
J
p)

� � �
�
J
p
���C(2�

�

c

p

o

5

s �)5� (8)

Therefore, if we know the flow–pressure curve, we can calculate the distri-
bution function using Eq. (8). The constant C(2� cos �)5 will be used as a nor-
malization constant, and as a consequence the relative number of pores of a
specific radius inside a determined interval can be calculated, but the absolute
number of pores cannot.

EXPERIMENTAL MATERIALS AND METHOD

Four flat-sheet hydrophobic microporous membranes were used in this
study. The PVDF membranes are marketed by Millipore as Durapore 450 and
200, and Inmobilon. The PTFE membrane is marketed by Gelman Instrument
Co. as TF450 and is a composite membrane formed by an actual porous PTFE
layer on a polypropylene screen support. The properties of the membranes, as
reported by the manufacturers, are listed in Table 1. Membranes were tested
as received with no pretreatment.

Distilled water was used as the nonwetting fluid for the permeation mea-
surements. A schematic diagram of the liquid displacement apparatus is
shown in Fig. 2. The membrane cell was supplied by Millipore (catalogue ref-
erence XX4404700). At this point it is necessary to point out that the effective
surface of filtration of a disk filter depends on the configuration of the filter
holder. The one used in this work includes a 42-mm diameter photoengraved
grille of stainless steel with 23% of its surface drilled. Compressed nitrogen
was used to generate the applied pressure.

To construct the flow–pressure curve the pressure drop was increased
slowly until flux was detected. This pressure was taken to be equal to �pmin.
As successively higher pressures were applied, the corresponding flux was
calculated from the measurement of the time necessary for a specific volume
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TABLE 1
Properties of Membranes Used as Indicated by the Manufacturer

Membrane Thickness (
m) Pore diameter (
m)

Durapore 450 125 0.45
Inmobilon 125 0.45
Durapore 200 125 0.22
TF 450 175 0.45
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FIG. 2 Schematic representation of the experimental apparatus used to generate the flow–pres-
sure curve. (1) Nitrogen tank, (2) pressure regulator, (3) water tank, (4) pressure indicator, (5)

membrane cell, (6) water out.

of water to flow. The flux values shown here are average results for different
measurements (with oscillations lower than 5%) when steady conditions were
achieved. Times of about 15 minutes were necessary. All experiments were
carried out at 293 K.

RESULTS AND DISCUSSION

Proceeding as indicated above, we obtained the flow–pressure data that ap-
pear in Figs. 3–6. In order to relate permeating pressures to pore sizes through
Eq. (1), the surface tension of water and the contact angle of water with the
membrane must be specified. A value of 72 � 10�3 N/m is taken for � (4). For
water on PVDF a contact angle of 115°, as measured by Lee et al. (5) for the
PVDF Millipore membranes, has been used. Contact angles varying from 108
to 115° for the water–Teflon pair have been reported in the literature (6). A
value of � � 114° has been used in the present work because it is the value
most frequently employed. From Eq. (1) can be seen that differences in the
calculated pore radius will vary by approximately 24% if a value of 108° is
considered instead of the value used.

The histograms shown in Figs. 7–10 were obtained by using the mentioned
data for � and �, and Eq. (5).

In order to obtain a continuous pore size distribution Eq. (8) has been used.
As indicated by McGuire et al. (1), different numerical problems have been
encountered when using this equation which explains why it has not been used
in the past. In order to eliminate these problems, they proposed passing some
type of smoothing spline through the experimental data (�pi, Ji) and using this
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FIG. 3 Flux vs pressure plot for Durapore 450 membrane. The line corresponds to the smooth-
ing spline obtained as indicated in the text.

FIG. 4 Flux vs pressure plot for Inmobilon membrane. The line corresponds to the smoothing
spline obtained as indicated in the text.
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FIG. 5 Flux vs pressure plot for Durapore 200 membrane. The line corresponds to the smooth-
ing spline obtained as indicated in the text.

FIG. 6 Flux vs pressure plot for TF 450 membrane. The line corresponds to the smoothing
spline obtained as indicated in the text.
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FIG. 7 Pore distribution vs pore radius plot for Durapore 450 membrane.

FIG. 8 Pore distribution vs pore radius plot for Inmobilon membrane.
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FIG. 9 Pore distribution vs pore radius plot for Durapore 200 membrane.

FIG. 10 Pore distribution vs pore radius plot for TF 450 membrane.
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spline in Eq. (8). In the present work we have followed this idea and used the
commercial application JMP for Apple Macintosh. The fitting technique used
in this program applies a cubic polynomial to the interval between points; the
polynomial is joined in such a way that the curve meets at the same point with
the same slope to form a continuous and smooth curve. The smoothing spline,
S, is obtained by adding a curvature penalty to the optimization that minimizes
the sum of squares error. So the spline S is found in a way that

��pmax

�pmin
S �(x)2 dx 	 �

�
1

� ∑
m

i�1
(S(�pi ) � Ji )2 (9)

is minimum (7). Here, S � is the second derivative of S, m is the number of ex-
perimental data points (�pi , Ji ), and � is the smoothing parameter. To obtain
the smoothed spline for the flow–pressure data, a smoothing parameter must
be specified. A smoothing parameter of zero will give a natural spline fit to the
data that goes through every data point, and any experimental errors in the data
will be reflected by spikes in the resulting distribution. With more sophisti-
cated experimental apparatus than that used in this study, the errors in the data
could be reduced and smaller smoothing parameters could be used without the
appearance of spikes in the distributions. A low smoothing parameter is de-
sired, so that the smoothing spline closely approximates the experimental
data. Therefore, the smoothing parameter was adjusted as low as possible
without giving erratic spikes. McGuire et al. (1) proved in their work that only
minor differences appear between pore distributions corresponding to differ-
ent smoothing parameters. So, for the smoothing parameter chosen, we have
obtained the smoothing spline and its derivative. Finally, the pore size distri-
butions shown in Figs. 7–10 were obtained by using Eq. (8).

In the mentioned figures, both histogram and pore size distribution ƒ(r)
have been normalized to make the area under the curve unity. The average
pore sizes

�ra� � ∑
m�1

j�1
Rjnj (10)

and

�rb� � �rmax

rmin
r ƒ(r) dr (11)

have been calculated. The results obtained are shown in Table 2.
As can be see in Figs. 7–10 and Table 2, there is a good qualitative and

quantitative agreement between the pore size distributions determined by both
methods for all the membranes studied. So, as indicated by McGuire et al.,
continuous pore size distributions for microporous membranes can be deter-
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mined from liquid permeation data following the method indicated. As can be
seen, all the membranes studied exhibit broad pore size distributions. These
are in good agreement with the values we obtained from gas–liquid displace-
ment porometry measurements (8). Obviously the characterization of these
membranes by their nominal pore size as indicated by the manufacturer is in-
sufficient. In addition, and in order to compare the pore size distributions here
obtained with the “nominal” data of catalogue (Table 1), a knowledge of the
meaning of this term and of the characterization technique used by the manu-
facturer is necessary.

CONCLUSIONS

Continuous pore size distributions for microporous membranes can be de-
termined from liquid permeation data without the need of a priori assumptions
about the distribution shape. In this paper we have shown that this can be made
with a commercial program using a smoothing spline that quickly converts the
liquid permeation data into pore size distributions. The continuous distribu-
tions obtained for all the membranes studied show good agreement with the
results obtained from the classical graphical method.

NOMENCLATURE

J volume flux of water through membrane (volume/time)
L thickness of membrane (length)
�p applied transmembrane pressure drop (force/area)
�pmax pressure at which all of the pores are flooded (force/area)
�pmin pressure at which the first pores are penetrated (force/area)
R center radius of a class in the discrete distribution (length)
r radius of a pore (length)
rmax largest pore radius (length)
rmin smallest pore radius (length)
� surface tension of water (force/ length)
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TABLE 2
Average Pore Sizes of Membranes Used

Membrane 	ra
 (
m) 	rb
 (um)

Durapore 450 0.371 0.356
Inmobilon 0.398 0.393
Durapore 200 0.203 0.199
TF 450 0.185 0.184
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 viscosity of water [mass/(length time)]
� contact angle of water with membrane (degrees)
� smoothing parameter for the smoothing spline [(abscissa units)3]
� tortuosity of the membrane pores (dimensionless)
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